Train
The mylib.train
contains classes:
The mylib.train
contains functions:
- class mylib.train.SyntheticBernuliDataset(n=10, m=100, seed=42)[source]
Base class for synthetic dataset.
- class mylib.train.Trainer(model, X, Y, seed=42)[source]
Base class for all trainer.
- mylib.train.cv_parameters(X, Y, seed=42, minimal=0.1, maximum=25, count=100)[source]
- Function for the experiment with different regularisation parameters
and return accuracy and weidth for LogisticRegression for each parameter.
- Parameters:
X (numpy.array) – The array of shape num_elements \(\times\) num_feature.
Y (numpy.array) – The array of shape num_elements \(\times\) num_answers.
seed (int) – Seed for random state.
minimal (int) – Minimum value for the Cs linspace.
maximum (int) – Maximum value for the Cs linspace.
count (int) – Number of the Cs points.