Train

The mylib.train contains classes:

The mylib.train contains functions:

class mylib.train.SyntheticBernuliDataset(n=10, m=100, seed=42)[source]

Base class for synthetic dataset.

class mylib.train.Trainer(model, X, Y, seed=42)[source]

Base class for all trainer.

eval(output_dict=False)[source]

Evaluate model for initial validadtion dataset.

test(X, Y, output_dict=False)[source]

Evaluate model for given dataset.

Parameters:
  • X (numpy.array) – The array of shape num_elements \(\times\) num_feature.

  • Y (numpy.array) – The array of shape num_elements \(\times\) num_answers.

train()[source]

Train model

mylib.train.cv_parameters(X, Y, seed=42, minimal=0.1, maximum=25, count=100)[source]
Function for the experiment with different regularisation parameters

and return accuracy and weidth for LogisticRegression for each parameter.

Parameters:
  • X (numpy.array) – The array of shape num_elements \(\times\) num_feature.

  • Y (numpy.array) – The array of shape num_elements \(\times\) num_answers.

  • seed (int) – Seed for random state.

  • minimal (int) – Minimum value for the Cs linspace.

  • maximum (int) – Maximum value for the Cs linspace.

  • count (int) – Number of the Cs points.