Skip to content

Documentation for train.py

mylib.train

Module description

SyntheticBernuliDataset(n: int = 10, m: int = 100, seed: int = 42)

Bases: object

Base class for synthetic dataset.

Parameters:

Name Type Description Default
n int

feature number. Defaults to 10.

10
m int

object number. Defaults to 100.

100
seed int

random state seed. Defaults to 42.

42
w = rs.randn(n) instance-attribute
X = rs.randn(m, n) instance-attribute
y = rs.binomial(1, expit(self.X @ self.w)) instance-attribute

Trainer(model, X: np.ndarray, Y: np.ndarray, seed: int = 42)

Bases: object

Base class for all trainers.

Parameters:

Name Type Description Default
model

The class with fit and predict methods.

required
X ndarray

The array of shape [num_elemennts, num_feature]

required
Y ndarray

[num_elements, num_answers]

required
seed int

random state seed. Defaults to 42.

42
model = model instance-attribute
seed = seed instance-attribute
train()

Train model

eval(output_dict: bool = False) -> str | dict

Evaluate model for initial validadtion dataset.

Parameters:

Name Type Description Default
output_dict bool

If True, return output as dict.

False

Returns:

Type Description
str | dict

classification report

test(X: np.ndarray, Y: np.ndarray, output_dict: bool = False) -> str | dict

Evaluate model for given dataset.

Parameters:

Name Type Description Default
X ndarray

The array of shape [num_elements, num_feature]

required
Y ndarray

The array of shape [num_elements, num_answers]

required
output_dict bool

If True, return output as dict. Defaults to False.

False

Returns:

Type Description
str | dict

classification report

cv_parameters(X: np.ndarray, Y: np.ndarray, seed: int = 42, minimal: float = 0.1, maximum: float = 25, count: int = 100) -> tuple[np.ndarray, list[float], list]

Function for the experiment with different regularisation parameters ("Cs") and return accuracy and params for LogisticRegression for each parameter.

Parameters:

Name Type Description Default
X ndarray

The array of shape [num_elements, num_feature]

required
Y ndarray

The array of shape [num_elements, num_answers]

required
seed int

Seed for random state. Defaults to 42.

42
minimal float

Minimum value for the Cs linspace. Defaults to 0.1.

0.1
maximum float

Maximum value for the Cs linspace. Defaults to 25.

25
count int

Number of the Cs points. Defaults to 100.

100

Returns:

Type Description
ndarray

Cs

list[float]

list of accuracies

list

list of params