Documentation for train.py
mylib.train
Module description
SyntheticBernuliDataset(n: int = 10, m: int = 100, seed: int = 42)
Bases: object
Base class for synthetic dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
feature number. Defaults to 10. |
10
|
m |
int
|
object number. Defaults to 100. |
100
|
seed |
int
|
random state seed. Defaults to 42. |
42
|
w = rs.randn(n)
instance-attribute
X = rs.randn(m, n)
instance-attribute
y = rs.binomial(1, expit(self.X @ self.w))
instance-attribute
Trainer(model, X: np.ndarray, Y: np.ndarray, seed: int = 42)
Bases: object
Base class for all trainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
The class with fit and predict methods. |
required | |
X |
ndarray
|
The array of shape [num_elemennts, num_feature] |
required |
Y |
ndarray
|
[num_elements, num_answers] |
required |
seed |
int
|
random state seed. Defaults to 42. |
42
|
model = model
instance-attribute
seed = seed
instance-attribute
train()
Train model
eval(output_dict: bool = False) -> str | dict
Evaluate model for initial validadtion dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dict |
bool
|
If True, return output as dict. |
False
|
Returns:
Type | Description |
---|---|
str | dict
|
classification report |
test(X: np.ndarray, Y: np.ndarray, output_dict: bool = False) -> str | dict
Evaluate model for given dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
The array of shape [num_elements, num_feature] |
required |
Y |
ndarray
|
The array of shape [num_elements, num_answers] |
required |
output_dict |
bool
|
If True, return output as dict. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
str | dict
|
classification report |
cv_parameters(X: np.ndarray, Y: np.ndarray, seed: int = 42, minimal: float = 0.1, maximum: float = 25, count: int = 100) -> tuple[np.ndarray, list[float], list]
Function for the experiment with different regularisation parameters ("Cs") and return accuracy and params for LogisticRegression for each parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
The array of shape [num_elements, num_feature] |
required |
Y |
ndarray
|
The array of shape [num_elements, num_answers] |
required |
seed |
int
|
Seed for random state. Defaults to 42. |
42
|
minimal |
float
|
Minimum value for the Cs linspace. Defaults to 0.1. |
0.1
|
maximum |
float
|
Maximum value for the Cs linspace. Defaults to 25. |
25
|
count |
int
|
Number of the Cs points. Defaults to 100. |
100
|
Returns:
Type | Description |
---|---|
ndarray
|
Cs |
list[float]
|
list of accuracies |
list
|
list of params |