Unscented Kalman Filter
- class kalman.unscented.UnscentedKalmanFilter(*args: Any, **kwargs: Any)[source]
Scaled–sigma‑point Unscented Kalman Filter.
Parameters
- state_dim, obs_dimint
Dimensions n and m.
- f, hCallable[[torch.Tensor], torch.Tensor]
Process / measurement models that expect sigma‑points of shape
(..., 2n + 1, n)
and return the propagated sigma‑points with the same shape.- alpha, beta, kappafloat
Standard UKF scaling parameters.
- Q, Rtorch.Tensor, optional
Process‑ and measurement‑noise covariances.
- init_mean, init_covtorch.Tensor, optional
Initial posterior (after a fictitious step 0 update).
- epsfloat
Jitter added to all Cholesky factorizations and post‑update covariances for numerical stability.
- forward(observations: torch.Tensor)[source]
Run the UKF over a sequence of observations.
Parameters
- observationstorch.Tensor
Shape (T, B, obs_dim)
Returns
all_states : GaussianState ‑‑ convenient wrapper holding the whole trajectory
- predict(state: GaussianState) GaussianState [source]
Single-step predict. Returns:
GaussianStateю
- predict_(state_mean: torch.Tensor, state_cov: torch.Tensor)
Internal function for single-step predict. Returns:
predicted_state_mean, predicted_state_cov
- predict_update(state: GaussianState, measurement: torch.Tensor) GaussianState [source]
Single-step predict and update in one function. Returns:
updated_state_mean, updated_state_cov
- update(state: GaussianState, measurement: torch.Tensor) GaussianState [source]
Single-step update. Returns:
GaussianStateю
- update_(state_mean: torch.Tensor, state_cov: torch.Tensor, measurement: torch.Tensor)
Internal single-step update. Returns:
updated_state_mean, updated_state_cov