Variational Kalman Filter
- class kalman.vkf.VBKalmanFilter(*args: Any, **kwargs: Any)[source]
Variational Bayesian Adaptive Kalman Filter (VB-AKF)
- forward(observations: torch.Tensor) Tuple[torch.Tensor, torch.Tensor] [source]
Process full sequence (T, B, obs_dim)
- get_measurement_covariance() torch.Tensor [source]
Returns current estimate of measurement covariance
- predict(state: GaussianState, process_matrix: torch.Tensor | None = None) GaussianState [source]
Prediction step with covariance dynamics
- update(state: GaussianState, measurement: torch.Tensor) GaussianState [source]
Iterative variational update step